当前位置: 首页 > 教师博客 > 数学中的整除问题

数学中的整除问题

2009年03月12日 21:23:40 来源:教师Office 访问量:555


                        各种被整除的数的特征

1)被2整除的数的特征:一个整数的末位是偶数(0、2、4、6、8)的数能被2整除。

2)被3整除的数的特征:一个整数的数字能被3整除,则这个数能被3整除。

3)被4整除的数的特征:一个整数的末尾两位数能被4整除则这个数能被4整除。可以这样快速判断:最后两位数,要是十位是单数,个位就是2或6,要是十位是双数,个位就是0、4、8。

4)被5整除的数的特征:一个整数的末位是0或者5的数能被5整除。

5)被6整除的数的特征:一个整数能被2和3整除,则这个数能被6整除。

6)被7整除的数的特征:“割减法”。若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,这样,一次次下去,直到能清楚判断为止,如果差是7的倍数(包括0),则这个数能被7整除。过程为:截尾、倍大、相减、验差。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

7)被8整除的数的特征:一个整数的未尾三位数能被8整除,则这个数能被8整除。

8)被9整除的数的特征:一个整数的数字和能被9整除,则这个数能被9整除。

9)被10整除的数的特征:一个整数的末位是0,则这个数能被10整除。

10)被11整除的数的特征:“奇偶位差法”。一个整数的奇位数字之和与偶位数字之和的差是11的倍数(包括0),则这个数能被11整除。(隔位和相减)

例如,判断491678能不能被11整除的过程如下:奇位数字的和9+6+8=23,偶位数位的和4+1+7=12。23-12=11。因此491678能被11整除。

11)被12整除的数的特征:一个整数能被3和4整除,则这个数能被12整除。

12)被13整除的数的特征:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,这样,一次次下去,直到能清楚判断为止,如果是13的倍数(包括0),则这个数能被13整除。过程为:截尾、倍大、相加、验差。

13)被17整除的数的特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,这样,一次次下去,直到能清楚判断为止,如果差是17的倍数(包括0),则这个数能被17整除。过程为:截尾、倍大、相减、验差。

编辑:刘锋侠
评论区
发表评论

评论仅供会员表达个人看法,并不表明网校同意其观点或证实其描述
教育部 中国现代教育网 不良信息 垃圾信息 网警110
郑重声明:本站全部内容均由本单位发布,本单位拥有全部运营和管理权,任何非本单位用户禁止注册。本站为教育公益服务站点,禁止将本站内容用于一切商业用途;如有任何内容侵权问题请务必联系本站站长,我们基于国家相关法律规定严格履行【通知—删除】义务。本单位一级域名因备案流程等原因,当前临时借用网校二级域名访问,使用此二级域名与本单位官网权属关系及运营管理权无关。陕西省咸阳彩虹学校 特此声明。
中华人民共和国电信经营许可证 ICP证 京ICP备13002626号-8 京公网安备11010502032087 陕西省咸阳彩虹学校 版权所有

联系地址:陕西省咸阳市彩虹路一号 邮编712021
北京网笑信息技术有限公司 仅提供技术支持 违法和不良信息举报中心