质点运动型问题就是在三角形、矩形、梯形等一些几何图形上,设计一个或几个动点,并对这些点在运动变化的过程中相伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究考察.质点运动型问题常常集几何、代数知识于一体,数形结合,有较强的综合性.
解决质点运动型问题需要用运动与变化的眼光去观察和研究图形,把握动点运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变量、不变关系或特殊关系.尽管一些试题大多属于静态的知识和方法,然而,这些试题中常常渗透着运动与变化的思想方法,需要用运动与变化的观点去研究和解决.
质点运动型问题有时把函数、方程、不等式联系起来.当一个问题是求有关图形的变量之间关系时,通常建立函数模型或不等式模型求解;当求图形之间的特殊位置关系和一些特殊的值时,通常建立方程模型去求解.